LAY

x @
AVF Control Number: AVF-VSR-569.0893

Date VSR Completed: 16 September 1993
93-07-12-INT

———————

AD-A273 715

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 930901wl.11322 ’
Intermetrics Inc. ‘
RISCAE Honeywell RH32-targeted Ada Compiler, 1.0 : X
DEC VAXstation 4000 under VMS, 5.5 =>]
RISCAE Honeywell RH32 Simulator running on the host under VMS, 5.5

(Final) - DTIC i

ELECTE
DEC14 1993 ”‘f
Prepared By: -
Ada Validation Facility
645 C-CSG/SCSL E
Wright-Patterson AFB OH 45433-6503

93-30206
(RRENRARG

93 12 13 056

Best ,
Available

- Copy

L

REPORT DOCUMENTATION PAGE | e

Mwuﬂmbmmambmdhmi hnunm Mmmummmmmmm

and maintaining the dats needed, ummmam %“cw“-ﬂdhma noluding
suggestions for reduging this burden, to Washingion Hestiquasters Service, Directorate and Reports, 1216 Jatlerson Davis Highway, Sulle 1204, Aviington, VA
222024302, and to the Ollice of infarmation and Regulstory Allsirs, Oﬁ.dm-iwwmw 20803.

[-ASENCYUSE deave 2. REPORT 3. REPORT IWPE AND DATES

'aISCAE Honeywell RH32-Targeted Ada Compiler, 1.0, Host: DEC]
VAXstation 4000, Target: RISCAI Honeywell RH32 Simulator runfing on the
host, 930901W1.11322

Authors:
Wright-Patterson AFB

" Ada Validating Facility, Language Control Facility ASD/SCEL |ORGANIZATION
Bldg. 676, Room 135

Wright Patterson AFB, Dayton OH 45433

1T3F3ﬁ§3HﬁR5iEFﬁTEHFE?ZEEﬁEVﬂEﬁEEﬁTNB 10. SPONSORING/MONITORING
Ada Joint Program Office AGENCY

The Pentagon, Rm 3E118
Washington, DC 20301-3080

11, A

12a. DISTRIBUTION/AVAILABILITY 12b. DISTRIBUTION
Approved for public release; distribution unlimited

19. (Maximum 200

RISCAE Honeywell RH32-targeted Ada Compiler, 1.0, Host: DEC VAXstation 4000 , Target:
TISCAE Honeywell RH32 Simulator running on the host, ACVC 1.11

[14. SUBJECT 15.
Ada programming language, Ada Compiler Val. Summary Report, Ada Comp KT

ARCY /M3] :s7BPIBI3AtYa ¥ - Testing, Ada Val. Office, Ada Val. Facilify
ﬁ?ﬁﬂﬁﬁﬁﬂ*?"""""“"

16, SECORTTY o SECUA PONTT 7 o —
UNCI.ASS!FED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
v , (Rov.
NSN]

Prescribed by ANS! Sid

1.11.

Host Computer System:

Target Computer System:

environment. ’

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
Testing was completed on 1 September 1993.

Compiler Name and Version: RISCAE Honeywell RH32-targeted Ada Compiler, 1.0

DEC VAXstation 4000
under VMS, 5.5

RISCAE 11l RH32 Simulator running on the host
under VMS, 5.5

Customer Agreement Number: 93-07-12-INT

See section 3.1 for any additional information about the testing

As a result of this validation effort, Validation Certificate
930901W1.11322 is awarded to Intermetrics Inc.
two years after MIL-STD-1815B is approved by ANSI.

This certificate expires

This report has been reviewed and is approved.

M. Dirk Rogers, Major, USAF
Acting Director

Department of Defense
Washington DC 20301

Accesion For
W&»—v\g NTIS CRA&I g
Ada Valldation Facility DTIC 7AB
Dale E. Lange Unannounced 0
Tec}mical Director Justification
645 CCSG/SCSL
Wright-Patterson AFB OH 45433-6503 By
Dist ibution|
Availability Codes
on Organization , Avail and|or
J» Directo ter and Software Engineering Division | °' Special
Institute for Defense Analyses
Alexandria VA 22311 g ,
i/ / .ﬂ/
oint Program Office DTIC QUALITY INSPECTED 3

DECLARATION OF CONFORMANCE
The following declaration of conformance was supplied by the customer.

Declaration of Conformance

Customer: Intermetrics Inc.

Ada Validation Facility: 645 C—-CSG/SCSL

Wright-Patterson AFB OH 45433-6503
ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: RISCAE Honeywell RH32-targeted Ada Compiler, 1.0

Host Computer System: DEC VAXstation 4000
under VMS, 5.5

Target Computer System: RISCAE Honeywell RH32 Simulator running on the host
under VMS, 5.5

Declaration:

I, the undersigned, declare that I have no
knowledge of deliberate deviations from the Ada Language

Standard ANSI/MIL~-STD-1815A ISO 8652-1987 in the implementation
listed above.

W 3//93
Customer Signature Date

.
& W=

.
W

WwWww w VNN [) b b b -
*

.
W

APPENDIX A

APPENDIX B

APPENDIX C

TABLE OF CONTENTS

INTRODUCTION
USE OF THIS VALIDATION SUMMARY REPORT .

m. @ @& @ e ¢ s & ¢ 6 & s+ o & & & o s o+ * o
m m msm *® e e & @ 8 ® e o o o & * s s ° -
mmnm or m ® ¢ & # e & & 8 8 o & o o v s o

IMPLEMENTATION DEPENDENCIES

mm m ® e ® e © e 5 © 8 °© ° o e & s @ o o
INAPPLICABLE TESTS. . ¢ « ¢ « o ¢ o o « ¢ o s o o @
TEST MODIFICATIONS. e s s e s s s s v e s e

mmm- e e e e ® & © 6 e & O o » & o
SUMMARY OF TEST RESULTS . « ¢ « ¢ « o« o o o o o » &
TESTEXECUTION. . ¢ ¢« « & ¢ ¢« o o« o « o« « « e e e

MACRO PARAMETERS

COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

1-1
1-2
1-2
1-3

2-1
2-1
2-4

3-1
3-1
3-2

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90) against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC). This validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to

{Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply

only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of

this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[(Ad283] Reference Manual for the Ada Programmi ¢
ANST MIL-STD-1815A, February Iggg and ;gﬁ 5%?%—?537.

[Pro90] Ada iler validation Procedures, Version 2.1, Ada Joint
rogram ce, Augus .

[UG89]) Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class

B tests are not executable. Each test in this class is compiled and the

resulting compilation listing is examined to verify that all violations of

the Ada Standard are detected. Some of the class B tests contain legal Ada

:lode which :laxst not be flagged illegal by the compiler. This behavior is
so verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn teste (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user’s guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the

Validation procedures required to establish the compliance of an Ada
Fe..ility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

ISO
LRM

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

withdrawn
test

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>.”

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneocus or illegal use of the Ada programming

language.

1-4

CHAPTER 2
IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203a C34006D C355081 C355083
€35508M C35508N C35702a C35702B B41308B C43004A
C45114A C45346a C45612a C456128 C45612C C45651A
C46022A B49008A B490088B A74006A C74308a B83022B
B83022H B830258 B83025D C83026a B830268 C83041A
B85001L C86001F C94021A C97116a €980038 BA2011A
CB7001A CB7001B CB7004A CCl223n BC1226A CCl12268
BC3009B BD1B02B BD1B06A AD1B08A BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2AS7A CDb2B15C
BD3006A BD4008A CD4022a CD4022D CD4024B Cb4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405a
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the IS0 and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as

appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z2 (15 tests)
C45524L..2 (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORT FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG_FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

* C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations lie outside the range of the basge
type; for this implementation, MACHINE OVERFLOWS is TRUE.

D55A03E..H (4 tests) use 31 levels of loop nesting; this level of loop
nesting exceeds the capacity of the compiler.

D64005G uses 17 levels of recursive procedure calls nesting; this
level of nesting for procedure calls exceeds the capacity of the
- compiler.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2AB4A, CD2AB4E, CD2AB4I..J (2 tests), and CD2A840 use length clauses

to specify non-default sizes for access types; this implementation
does not support such sizes.

2-2

AE2101C and EE2201D..E

(2 tests)

IMPLEMENTATION DEPENDENCIES

use instantiations of package

SEQUENTIAL IO with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H,

with unconstrained array
without defaults; these instantiations are rejected by this compiler.

EE2401D, and EE2401G use instantiations of package DIRECT 10
types and record types with discriminants

The following 260 tests check operations on sequential, text, and

direct access files;

files:
Ce2102a..C

CE2103C..D

CE2107A. .H
CE2110A..D
CE2201A..C
CE2205A

CE2401E..F
CE2405B

CE2409A..B

CE3102F..H

CE3106A..B
CE3110A
CE3114A..B
EE3204A
EE3301B
CE3401A
CE3403A..C
EE3405B
CE3408A..C
CE3410a
CE3411C
CE3414A
CE3605A. .E
CE3705A. .E
CE3805A..B
CE3904A..B
CE3906E..F

(3)
(2)
(8)
(4)
(3)

(2)
(2)
(3)
(2)

(2)

(3)
(3)

(5)
(5)
(2)
(2)
(2)

CE2102G. .H
CE2104A..D
CE2107L
CE2111A..1
CE2201F..N
CE2206A
CE2401H..L
CE2406A
CE2410A..B
CE3102J..K
CE3107B
CE3111A..B
CE3115Aa
CE3207A
CE3302A
CE3402A
CE3403E..F
CE3405C..D
CE3409A
CE3410C. .E
CE3412Aa
CE3602A..D
CE3606A..8
CE3706D
CE3806A..B
CE3905A..C

(2)
(4)

(9)
(9)

(5)

(2)
(2)

(2)

(2)
(2)

(3)

(4)
(2)

(2)
(3)

CE2102K
CE2105A. .B
CE2108A. .H
CE2115A..B
CE2203A
CE2208B
CE2403Aa
CE2407A. .B
CE2411A
CE3103A
CE3108A..B
CE3111D..E
CE3119A
CE3208A
CE3304A
EE3402B
CE3404B..D
CE3406A..D
CE3409C. .E
EE3410F
EE3412C
CE3603A
CE3704A..F
CE3706F. .G
CE3806D. .E
CE3905L

(2)
(8)
(2)

(2)

CE2102N. .Y
CE2106A..8B
CE2109A..C
CE2120A..B
CE2204A..D
CE2401A..C
CE2404A..B
CE2408A. .B
CE3102A..C
CE3104A..C
CE3109A

CE3112A..D
EE3203A

CE3301A

CE3305A

CE3402C..D
CE3405A

CE3407A..C
EE3409F

CE3411A

CE3413A..C
CE3604A..B
CE3704M..0
CE3804A..P
CE3806G. .H
CE3906A..C

CE2103A, CE2103B, and CE3107A use an illegal file name in an

to create

implementation does

USE_ERROR.

this implementation does not support external

(12)
(2)
(3)
(2)
(4)
(3)
(2)
(2)
(3)
(3)

(4)

(2)
(3)

(3)
(2)
(3)
(16)
(2)
(3)

attempt

file and expect NAME ERROR to be raised; this

(See section 2.3.)

not support external files and so raises

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 10 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B83033B B85013D

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the separate compilation of that unit’s body; as allowed by
AI-257, this implementation requires that the bodies of a generic unit be
in the same compilation if instantiations of that unit precede the bodies.
The implementation issues error messages at link time that the main program
*has unresolved generic instantiations" and the tests cannot be executed.

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-00408 and
AI- 7506 such that the compilation of the generic bodies makes the
instantiating units obsolete—no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external
file. This 1is acceptable behavior because this implementation does not
support external files (cf. AI-00332).

2-4

CHAPTER 3
PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation, contact:

Mike Ryer

Intermetrics Inc.

733 Concord Avenue
Cambridge MA 02138-1002
(617) 661-1840

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that cforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b

3-1

PROCESSING INFORMATION

and £, below).

a) Total Number of Applicable Tests 3575

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 39
d) Non-Processed I,/0 Tests 260
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 500 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A TK-50 cartridge tape containing the customized test suite (see section
1.3) was taken on-site by the validation team for processing. The contents
of the TK-50 cartridge tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the computer system, as appropriate,
and run. The results were captured on the computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

Option/Switch Effect
Compiler Options
/LIST Generate a compilation listing with default

listing format. Used for E tests.

e : Generate a compilation listing with continuous
listing format. Used for all other tests.

Program Builder options
/PASS=1link options Pass options to the linker locator.

Linker/Locator options
/LL=adabase: (1ib]hnwmpk.1bl
Name of library index file to be used for
unresolved references.

/C=adabase:[1lib]hnwmpk.llc
Name of file containing locator commands.

3-2

PROCESSING INFORMATION

/SE Eliminate unreferenced segments.

/US=("atat001","rtl_stack","address_space descriptor”)
Mark indicated symbols as referenced before
determining unreferenced segments.

Test output, compiler and linker listings, and job logs were captured on
TK-50 cartridge tape and archived at the AVF. The listings examined
on-site by the validation team were also archived.

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89). The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN—also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximm input-line

length.

Macro Parameter Macro Value
SMAX IN LEN 200 - value of V
$BIG_ID1 (1..V=1 => 'A’, V=) r17)
$BIG_ID2 (1..V=1 => 'A’, V =) *27)
$BIG_ID3 (1..Vv/2=> 'A’) & '3’ &
(1..V=1-V/2 => 'A’)
$BIG_ID4 (1..v/2 => 'aA’) & 4’ &
(1..V=1-V/2 => 'ar)
$BIG_INT LIT (1..Vv-3 => 707) & "298"
$BIG_REAL LIT (1..v-5 => 70’) & "690.0"
$BIG_STRINGL " & (1..V/2 => 'AT) & '"°
$BIG_STRING2 N & (1..V-1-V/2 => 'A?) g ?17 g '
$BLANKS (1..V=20 => 7)

$MAX LEN INT BASED LITERAL
"2:" & (1..v-5 = 0’) & "11:"

$MAX LEN REAL BASED LITERAL
"16:" & (1..V~7 => '0’) & "F.E:"

A-1

$MAX STRING LITERAL ‘"' & (1..V=2 => 'A’) & '’

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
$ACC_SIZE 32
SALIGNMENT 4
$COUNT_LAST 2_147_483_647

$DEFAULT MEM SIZE 2 147 483 648
$DEFAULT STOR UNIT 8
SDEFAULT_SYS_NAME HNW_RH32

$DELTA DOC 2.0%#(-31)

$ENTRY_ADDRESS 16414

$ENTRY_ADDRESS1 16424

SENTRY_ADDRESS2 16434

$FIELD LAST 2 147_483 647

$FILE_TERMINATOR '

$SFIXED NAME NO_SUCH_FIXED TYPE

$FLOAT_NAME NO_SUCH_FLOAT TYPE
$FORM_STRING "o

$FORM_STRING2 "CANNOT_RESTRICT FILE CAPACITY"

$GREATEP THAN DURATION
| 90_000.0

SGREATER THAN DURATION BASE LAST
10 000_000.0

s&m_m_rm_ﬁasz LAST
3.71E+38

$GREATER THAN FLOAT SAFE LARGE
1.0E38

A-2

MACRO PARAMETERS
$GREATER THAN SHORT_FLOAT SAFE LARGE
1.0E38
$HIGH PRIORITY 31

$ILLEGAL EXTERNAL FILE NAME1
NO_FILES AT ALL 1

SILLEGAL EXTERNAL FILE NAME2
NO_FILES AT ALL 2

SMPPROPRIATE_LINE_LEKI?Iﬂ

smmm_pm_hn?m

$INCLUDE PRAGMAL PRAGMA INCLUDE ("A28006D1.ADT")
$INCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006F1.ADT")
$INTEGER FIRST 2147483648
$INTEGER_LAST 2147483647

S$INTEGER LAST PLUS 1 2147483648
$INTERFACE_LANGUAGE ~ ASSEMBLY
$LESS_THAN DURATION -90_000.0

SLESS_THAN DURATION BASE FIRST
-15000000.0

* $LINE_TERMINATOR ASCII.LF
$LOW_PRIORITY 1

SMACHINE CODE_STATEMENT
Format R Offset Base’(H LD,R1,0,R29);

Format_ R’ (H JMP,R1);
Format R R R’(H_ADD,RO,RO,R0);

$MACHINE CODE_TYPE Format R R

$MANTISSA DOC 31

$MAX DIGITS 15

$MAX_INT 2147483647
$MAX INT PLUS 1 2 147_483 648
SMIN INT -2147483648

A-3

MACRO PARAMETERS

SNAME BYTE_INTEGER
$NAME_LIST EN_RH32, TRW_RH32
$NAME SPECIFICATIONL NO_FILES 1
$NAME SPECIFICATION2 NO_FILES 2
SNAME_SPECIFICATION3 NO_FILES 3

$NEG_BASED INT 164r000000E#
$NEW MEM_SIZE 2147483648
$NEW_STOR UNIT 8

$NEW_SYS NAME TRW_RH32
$PAGE_TERMINATOR ASCII.FF

$RECORD DEFINITION RECORD MNEMONIC:MNEMONIC ENUM;
REG:REGISTER ENUM; END RECORD;

$RECORD NAME FORMAT R
STASK SIZE 32

$TASK _STORAGE SIZE 2048

$TICK 2.0%%(-14)
SVARIABLE ADDRESS 1643FFDO%
SVARIABLE ADDRESS1 \G#3FFF4#
SVARIABLE ADDRESS2 16#3Frrod
$YOUR PRAGMA APART

A-4

APPENDIX B
COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

..

invocation

Options

/4dsbug Generate debugging output. The /debug option causes the compiler to generate the ap-
propriate code and data for operation with the RISCAE Debugger.

/exzor_log Generate exror iog file. The/erroxr_log option causes the compiler to
generate a log file containing all the error messages and warning messages produced during com-
pilation. The error log file has the same name as the source file, with the extension .exz. For
example, the error log file for simple .ada is simple.exz. The error log fileis placed in the
current working directory. In the absence of the /14ist option, the error log information is sent to
the standard output stream.

/aum_checks_suppress Suppress numeric checking. The /num_checks_suppress option
suppresses two kinds of numeric checks for the entire compilation:

1. division_check
2. overflow_check

These checks are described in section 11.7 of the LRM. Using /num_checks_suppress re-
duces the size of the code. Note that there is a related adahnw option, /all_checks_sup-
press (0 suppress all checks for a compilation.

/all_checks_suppress Suppressall checks. The /all_checks_suppress option suppresses
all automatic checking, including numeric checking. This option is equivalent to using pragma
suppress on all checks. This option reduces the size of the code, and is good for producing “pro-
duction quality” code or for benchmarking the compiler. Note that there is a related adahnw op-
tion, /num_checks_suppress (0 suppress only certain kinds of numeric checks.

/warning_suppress
‘Suppress warning messages. With this option, the compiler does not print warning messages about
ignored pragmas, exceptions that are certain to be raised at run—time, or other potential problems that
the compiler is otherwise forbidden to deem as errors by the LRM.

/no_delete

Keep internal form file. This option is for use by compiler maintainers. Without this option, the
compiler deletes internal form files following code generation.

/1list
Generate listing file. The /1ist option causes the compiler to create a listing. The formats of and
options for listings are discussed in section 3.2.1.7. The default listing file generated has the same °
name as the source file, with the extension . 1st. For example, the default listing file produced for
simple.ada has the name simple .1st. The listing file is placed in the current working direc-
tory. Inorder to generate a listing in the continuous listing format, use the -1e switch rather than the

/1ist option. Note: /list also causes an error log file 1o be produced, as with the/ex-
rox_log option.

/libzary
Default: ada .1ib

Use alternate library. The /1ibrary option specifies an alternative name for the program library.

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to linker documentation and not
to this report.

..................

invocation

SANP [option ...] ([main-proceduro-neme)

Options

/compiler=compiler_name

/main_suppress

Default: ada.lib

Use alternate compiler. The / compi ler option specifies the complete (non -
relative) directory path to the RISCAEAda compiler. This option overrides
the compiler program name stored in the program library. The /compiler
option is intended for use by system maintainers.

Suppress main program generation step. The /main_suppress option sup-
presses the creation and additional code generation steps for the temporary
main program file. The /main_suppress option can be used when a sim-
ple change has been made to the body of a compilation unit. If unit elabora-
tion order is changed, or if the specification of a unit is changed, or if new
units are added, then this option should not be used. The /main_sup-
press option saves a few seconds, but places an additional bookkeeping
burden on you. The option should be avoidzd under most circumstances.
Note that invoking bamp with the /1load_suppress option followed by
another invocation of bamp with the /main_suppress option has the
same effect as an invocation of bamp with neither option (/1load_sup-
press and /main_suppress neutralize each other).

/library=library-name

/load_suppress

RISCAE Software

Default: ada.lib

Use alternate library. The /1ibrary option specifies the name of the pro-
gram library to be consulted by the bamp program. This option overrides the
default library name.

Nolink. The option suppresses actual object file linkage, but creates and per-
forms code generation on the main program file. Note that invoking bamp *
with the option followed by another invocation of bamp with the /
main_suppress option has the same effect as an invocation of bamp with
neither option. That is, and /main_suppress neutralize each other.

Users Manual

/display_commands

No operations. The /display_commands option causes the bamp com-
mand to doa ““dry run”; it prints out the actions it takes to generate the execut-
able program, but does not actually perform those actions. The same kind of
information is printed by the /print_operations option.

/ output=output—file-name

Use alternate executable file output name. The /output option specifies
the name of the executable program file written by the bamp command. This
option overrides the default output file name which is the main procedure
name concatenated to 8 characters with file extension . ab.

/ pass=llink-options

Pass options to the Linking Locator. The /pass option specifies the Linnking
Locator options which are passed directly to the Linking Locator.

/print_operations

Print operations. The /print_operations option causes the bamp command to
print out the actions it takes to generate the executable program as the actions
are performed.

/verbose Link verbosely. The /verbose option causes the bamp command to print
out information about what actions it takes in building the main program such
as:

¢ The name of the program library consulted.

¢ The library search order (listed as “‘saves” of the library units used by
the program).

¢ The name of the main program file created (as opposed to the main
procedure name).

o The elaboration order.
e The name of the executable lcad module created.

RISCAE Software Users Manual

..................

Invocation

..

x.:m;:::m_om.to:. 3Nl [...] [options)

Linker Options

/LIB=(lib(,lib2....
)

/LL=(ifn(,ifm2....])

/SE

%

fUS=("sym”,”sym
2°.)

Name library index files to be searched for unresolved externals. If the index
file indicates that a given external can be resolved by reading a particular
module, that module is included in the link. The Librarian section explains
how library files are built and managed. If a module name in the library index
file is not a full pathname, 11ink searches for the module in the directory
containing the index file.

Read library index to be searched from file ifn. Index file ifn lists all libraries
that would be specified on the command line if the /LIB switch were used.

Note: The linker portion of the linking locator may not always search
the libraries in the order given. See the Library Searches subsection
for more details.

Eliminate unreferenced segments in object modules during linking. This op-
tion has no effect unless the /US option is used.

Mark the specified symbols as referenced before determining unreferenced
segments. The symbols may be global symbols or segment names. This op-
tion has no effect unless the /SE option is used.

Locator Options

/IC=cfn

/LO

/P=n

7 /P=n%

RISCAE Sofiware

Locate processing is done by default. If the /LO switch is present, locate pro-
cessing is not performed. When locate processing is performed, output is
written to PROG.AB unless the /0 switch is specified.

Read locator commands from file ¢fn.

Suppress locate processing (link only). If no ROM processing option is speci-
fied, write output to PROG.LN.

Pad the size of all segments by n bytes.

Pad the size of all segments to n percent of their original size (n must be >
100). .

Users Manual

ROM Processing Options

/B=segname

/RC=classl|,class2,...

/RS=segl[.seg2,...]

ROM processing is performed if and only if some ROM processing option
is present. If locate processing is also performed. output is written (o
PROG.AB. If only ROM processing is performed, the output is written to
PROG . RMP by default..

Specify the name of the segment to be created. The default name is rom-
pOutSeg.

]
Specifies that all segments of the named class(es) will be processed.

Specifies that the named segment(s) will be processed.

Symbol Options

/K[="sym,sym2,..."]

Keep only the named global symbols in the ouput module; suppress all oth-
ers. If no symbols are named, suppress all global symbols.

/SP[="sym,sym2,..."]

Suppress the named global symbols in the output module; keep all others.

Global symbols are generated by the compiler and assembler for giobal vari-
ables and procedures. The compiler’s rules for forming global symbel names
are described in the RISCAE Software Programmer's Manual. Note that the
names specified in /SP and /K must be formed via these conventions.

Generally all global symbols must be retained in the output module to permit
any further references to be resolved during later links. Specific global sym-
bols may be suppressed to mask name conflicts. The switches which apply
to global symbols are mutually exclusive.

If no debugging is intended and the link is complete, all symbols may be
stripped. Stripping symbols reduces the amount of disk space required to
hold the output module and speeds up the execution of llink and the formatter. -
Itdoes not affect the size of the user program or the download hex file gener-
ated by the formatter.

Miscellaneous Options

/0

. =if)

RISCAE Software

(Zero) Displays the version number of the executable (for technical support
purposes).

This switch specifies that the names of input object modules are to be taken
from the file ifn. The input module names should be listed in the file, one per

Users Manual

/O[=ofn]

/W

RISCAE Software

line. The name of the first module listed will be used as a default for
constructing the name of the linked output file. If ifn is omitted, the names of
the files are read from the terminal.

This switch specifies the name of the output file. If the switch is omitted, out-
put will be written to PROG.LM or PROG.RMP, depending on the switches spe-
cified.
Verbose mode. Reports the following linking actions as performed:

¢ - The names of the object modules being read

e — The names of the library index files being searched.

¢ - The name of the output module.

This switch inhibits waming messages. If 11ink is not performing the lo-
cate function, the “‘unresolved externals™” warmning is the only waming mes-
sage that 11ink can emit. This can safely be suppressed if unresolved exter-
nal references are expected. Other warning messages represent error
conditions and should not in general be ignored or suppressed.

Users Manual

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-~dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this

report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -2147483648 .. 2147483647;
type LONG INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -2147483648 .. 2147483647;
type BYTE INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 6 range -3.40282E+38 .. 3.40282E+38;
type LONG FLOAT is digits 15 range -1.79769E+308 .. 1.79769E+308;

type DURATION is delta 2**-14 range -86400.0 .. 86400.0;

end STANDARD;

Appendix F

This section constitutes Appendix F of the Ada LRM for this implementation. Appendix F from the LRM
states:

The Ada language allows for certain machine—dependencies in a controlled manner. No machine-
dependent syntax or semantic extensions or restrictions are allowed. The only allowed implemenia-
tion—dependencies correspond to implementation—dependent pragmas and attributes, certain ma-
chine~dependent conventions as mentioned in Chapter 13. and certain allowed restrictions on
representation clauses.

The reference manual of each Ada implementation must include an appendix (called Appendix F)
that describes ail implementation—dependent characteristics. The Appendix F for a given imple-
mentation must list in particular:

1. The form, allowed places. and effect of every implementation—dependent pragma.

2. The name and the tvpe of every implementation—dependent atiribute.

3. The specification of the package SYSTEM.

4. The list of all restrictions on representatic 'auses.

5. The conventions used for any implementation—-generated name denoting implementation—
dependent components.

6. The interpretation of expressions that appear in address clauses. including those for inter-
rupts.

7. Any restriction on unchecked conversions.

8. Any implementation—dependent characteristics of the input-output packages
In addition, the present section will describe the following topics:

9. Any implementation—dependant characteristics of tasking.

10. O&wr implementation dependencies.

F.1: Pragmas

F.1.1: Predefined Language Pragmas

This section describes the form, allowed places, and implementation-dependent effect of every predefined
language pragma.

F.1.1.1: Pragmas ELABORATE, LIST, OPTIMIZE, PAGE, AND PRIORITY

Pragmas ELABORATE, LIST, OPTIMIZE, PAGE, and PRIORITY are supported exactly in the form, in the
allowed places, and with the effect as described in the LRM.

F.1.1.2: Pragm: ST/PPRESS

Form: pragma SUPPRESS (identifier {,[ON =>)] name});

where the identifier and name, if present, are as specified in LRM B(14). Suppression of the follow-
ing run—time checks are supported:

ACCESS_CHECK
DISCRIMINANT_CHECK
INDEX_CHECK

LENGTH_CHECK
RANGE_CHECK
DIVISION_CHECK
OVERFLOW_CHECK
ELABORATION_CHECK
STORAGE_CHECK

Allowed Places: as specified in LRM B(14) : SUPPRESS.

Permits the compiler not to emit code in the unit being compiled to perform various checking opera-
tions during program execution. The supported checks have the effect of suppressing the specified
check as described in the LRM except as follows.

¢ The suppression of DISCRIMINANT_CHECK has no effect if the pragma is not
in the same declarative part as the type to which it applies.

e The suppression of ELABORATION_CHECK has no effect on a task body.

e The suppression of STORAGE_ERROR does not suppress the check that an al-
locator does not require more space than is available.

F.1.1.3: Pragma INLINE

Form: Pragma INLINE (subprogram_name_comma_list)

Allowed Places: As specified in LRM B(4) : INLINE

Effect: If the subprogram body has aiready been compiled, or is in the same compilation unit as the call, and

Use:

if the subprogram does not contain nested subprograms, the code is expanded in-line at every call
site and is subject to all optimizations. If the subprogram to be inlined is recursive, only the first call
is inlined and the recursive call is a normal call.

Exception handlers for the INLINE subprogram are handled as for block statements.

This pragma is used either when it is believed that the time required for a call to the specified routine
will in general be excessive (this for frequently called subprograms) or when the average expected
size of expanded code is thought to be comparable to that of a call.

F.1.1.4: Pragma INTERFACE
Form: Pragma INTERFACE (language_name, subprogram_namel, "link_name'})

where the language_name must be assembly, builtin, or internal, and the subprogram_name is as
specified in the LRM B(S). The optional link_name parameter is a string literal specifying the entry
point label of the non—Ada subprogram named in the second parameter. If link_name is omitted,
then link_name defaults to the value of subprogram_name.

Allowed Place: As specified in LRM B(S) : INTERFACE
Effect: Specifies that a subprogram will be provided outside the Ada program library and will be callable

Use:

with a specified calling interface. Neither an Ada body nor an Ada body_stub may be provided for
a subprogram for which INTERFACE has been specified. link_name is used as the entry point label
of the subprogram. The language_name builtin and internal are reserved for use by RISCAE com-
piler maintainers in run time support packages.

Use with a subprogram being provided via another program language and for which no body will .
be given in any Ada program.

The calling conventions for an Ada program calling a pragma INTERFACE (assembly) subprogram
are according 10 the RISCAE Run Time Model described in Appendix C of the RISCAE Software
Programmer’s Manual.

F.1.1.5: Pragma PACK
Form: Pragma PACK (fype_simple_name)
Allowed Places: As specifiedin LRM (3.1 (12)

Effect: The effect of pragma PACK is to minimize storage consumption by discrete component types whose
ranges permit packing. Refer to the RISCAE Software Programmer’s Manual for more information
about the effect of pragma PACK.

Use: Pragma PACK is used to reduce storage size. Size reduction usuaily implies an increased cost of
accessing components. The decrease in storage size may be offset by increase in size of accessing
code and by slowing of accessing operations,

F.1.1.6: Pragmas SYSTEM, NAME, STORAGE_UNIT, MEMORY_SIZE, CONTROLLED
These pragmas are not supported and are ignored
F.1.1.7: Pragma SHARED

Form: pragma SHARED (variable_simple_name)
where variable_simple_name is of any scalar type except long_float.

Allowed Places: As specified in LRM B(2) : SHARED

Effect Direct reading and direct updating of the specified variable must be implemented as an indivisible
operation. In addition, the implementation must easure that each reference of the variable is made
directly from/to memory (i.e. not from a temporary copy of the variable).

Use: This is used to cause every read or update of a variable to be a *“synchronization™ point for that vari-
able.

F.1.2: RISCAE~Defined Pragmas

F.1.2.1: F.1.2.2: Pragma APART

Form: pragma APART (variable_name{, segnamel)
where variable _name must refer to a static object, (i.e. a variable declared in a library unit package
specification or body, or in a package specification or body contained in a {ibrary unit package) and
segname, if provided, must be a string literal which specifies the name of the segment containing
the object.

Allowed Places: Pragma APART is allowed in the declarative region of a library unit package specification
or body, or in a package specification or body contained in a library unit package. The declaration
of the variable must be in the same declarative region as the pragma and must proceed the occurrence
of the pragma.

Effect: The object will be placed in a segment that is not included in group “data” and consequently, is ad-
dressed directly using prefixed memory direct addressing mode. If segname is provided, it is used
as the name of the segment for the object. Otherwise, the object is located in segment “aidata” for
initialized objects or *‘audata” for uninitialized objects.

Use: The RISCAE run time model specifies that static objects and constants be addressed using base offset .
addressing mode with the giobal base register (GBR) and that there is a limit of 64K bytes of total
size of suchdata. Pragma APART can be used to specify objects which are not to be addressed using
the giobal base register (GBR). Pragma APART may be used if specific data items need to be located

further APART than 64K bytes or in a large program for which the total size of static objects and
constants is larger than 64K bytes. Refer to the RISCAE Programmer’s Reference Manual for more
information about location and addressing of static objects.

F.1.2.3: Pragma INDIRECT

Form: pragma INDIRECT (subprogram_name)
where subprogram_name is the name of a subprogram which is declared in the same declarative
region. A body is not allowed for a subprogram to which pragma INDIRECT applies.

Allowed Places: Pragma INDIRECT must appear within the same declarative part as the subprogram to
which it applies, following the subprogram, and prior to the first use of the subprogram.

Effect: A call to a subprogram to which pragma INDIRECT applies will cause the compiler to generate a
cali to the address provided by the first parameter of the subprogram with parameters 2 through N
of the subprogram being treated as parameters | through N-1. This provides the ability to save the
address of a subprogram in a variable or data structure so that it may be called later.

Use: This is used in run time system code. It should not normally be used in application programs.
F.1.2.4: Pragma CONTIGUOUS
Form: pragma CONTIGUOUS (record_type_name)

Allowed Places: Pragma CONTIGUOUS must appear within the same declarative part as the type to which
it applies, following the type declaration but prior to any forcing occurrence of the type.

Effect: Pragma CONTIGUOUS alters the layout of an Ada discriminant record type. Normally an array
whose bound depends on a discriminant is mapped on to a pointer to a dynamically allocated string.
This pragma forces the compiler to lay out the record and array in a single object.

Use: This is used in run time system code and should only be used as it is used in the run time. It should
not normally be used in application programs.

F.2: Standard Types and Implementation-Dependant Attributes

‘ There are no implementation—dependent attributes provided by the RISCAE Ada compiler. The fol-
lowing sections define the standard types supported by the RISCAE Ada compiler and the implementation—
dependent values of their attributes.

F.2.1: Standard Types

The following standard types are defined for the RISCAE RH32-targeted compiler.
type byte_integer is range 2147483648 .. 2147483647,
type short_integer is range —2147483648 .. 2147483647
type integer is range —2147483648 .. 2147483647,
type long_integer is range —2147483648 .. 2147483647,
type float is digits 6 range —3.40282E+38 .. 3.40282E+38;
type long_float is digits 15 range -1.79769E+308 .. 1.79769E+308;
type duration is delta 2**~14 range -86400.0 .. 86400.0;

F.2.2: Implementation—-Dependent Attributes
This section describes the implementation—-dependent values of the attributes of the standard types.

" Type INTEGER

INTEGER'SIZE =32 - - bits

INTEGER'FIRST
INTEGER'LAST

Type LONG_INTEGER
INTEGER'SIZE
INTEGER'FIRST
INTEGER'LAST

Type SHORT_INTEGER.
INTEGER'SIZE
INTEGER'FIRST
INTEGER'LAST

Type BYTE_INTEGER.
INTEGER'SIZE
INTEGER'FIRST
INTEGER'LAST

Type FLOAT.
FLOAT'SIZE
FLOAT DIGITS
FLOAT'MANTISSA
FLOAT'EMAX
FLOAT EPSILON
FLOAT SMALL
FLOAT'LARGE ,
FLOAT"MACHINE_ROUNDS
FLOAT"MACHINE_OVERFLOWS
FLOAT"MACHINE_RADIX
FLOAT"MACHINE_MANTISSA
FLOAT"MACHINE_EMAX
FLOAT"MACHINE_EMIN
FLOAT SAFE_EMAX
FLOAT'SAFE_SMALL
FLOAT SAFE_LARGE

Type LONG_FLOAT.
LONG_FLOAT'SIZE
LONG_FLOAT'DIGITS
LONG_FLOAT"MANTISSA
LONG_FLOAT'EMAX
LONG_FLOAT EPSILON
LONG_FLOAT'SMALL
LONG_FLOAT'LARGE

=~(2%*31)

= —~2**31)

= ~(2**31)

= —<(2**31)

LONG_FLOAT"MACHINE_ROUNDS

LONG_FLOAT'MACHINE_OVERFLOWS

LONG_FLOAT"MACHINE_RADIX
LONG_FLOAT'MACHINE_MANTISSA
LONG_FLOAT"MACHINE_EMAX
LONG_FLOAT"MACHINE_EMIN
LONG_FLOAT'SAFE_EMAX
LONG_FLOAT SAFE_SMALL

- =~2,147.483.648
= (2**31-1) - - 2,147.483.648

= 32 - bits

~=--2,147483,648
= (2**31 - 1) - - 2,147.483.648

= 32 - bits

—-2,147,483,648
= (2**31 - 1) — 2,147,483.648

= 32 - bits

—~2,147,483,648
= (2**31 - 1) — 2,147,483,648

= 32 - - bits.

=6

=21

=84

= 2.0**(-20)

= 2.0**(-85)

= (1.0 -2.0°%(=21))*2.0**84
= true

= true

=2

=24

=128

=-125

=125

= 2.0**(~126)
=(1.0-2.0**-21)*2.0**125

= 64 - ~ bits.

= {5

=51

=204

= 2.0**(-50)

= 2.0**(~205)
= (1.0 - 2.0**-51)*2.0**204
= true

= {rue

=2

=53

= 1024

=-1021

= 1021

= 2.0**(-1022)

LONG_FLOAT SAFE_LARGE = (1.0~2.0**-51)*2.0**1021

Type DURATION.
DURATION'DELTA
DURATION'FIRST
DURATION'LAST
DURATION'SMALL

Type PRIORITY.
PRIORITY 'FIRST
PRIORITY'LAST

F.3: Package SYSTEM

package SYSTEM is

2.0**(~14) - - seconds
- 86_400.0

86_400.0

2.0**(-14)

L
w
—

type ADDRESS is new integer;
NULL_ADDRESS : constant ADDRESS :=0:
type NAME is (haw_rh32, orw_rh32);
SYSTEM_NAME : constant NAME := hnw_rh32;

STORAGE_UNIT : constant := 8;
MEMORY_SIZE: constant := 2**31; - - In storage units

- - System-Dependent Named Numbers:

MIN_INT : constant ;= -2147483648;
MAX_INT : constant := 2147483647,
MAX_DIGITS : constant := 15;
MAX_MANTISSA : constant := 31;
FINE_DELTA : constant := 2.0**(-31);
TICK : constant := 2.0**(-14);

- — Other System-Dependent Declarations

- - Legal values for pragma PRIORITY.

- - There are 31 user priority levels.

- — The default priority, if not assigned by pragma, is 0.
subtype PRIORITY is INTEGER range | .. 31:

- = NOTE: The RISCAE kernel supports higher priorities
- - under which hardware interrupts are disabled.

end SYSTEM ;

.- F.4: Restrictions on Representation Clauses
| This section describes the list of all restrictions on representation clauses.

“NOTE: An implementation may limit its acceplance of epresentation clauses 10 those that can be
handled simply by the underiving hardware.... If a program coni ins a representation clause that is not ac-
cepted [by the compiler|, then the program is illegal.” (LRM 13.1 (10)).

F.4.1: Length Clauses
Size specification: T SIZE.

The size specification may be applied to a type T or first~named subtype T which is an access type,
a scalar type, an array type or a record type.

AI-00536/07 has altered the meaning of a size specification. In particular, the statement from the
LRM 13.2.a that the expression in the length clause specifies an upper bound for the number of bits
to be allocated to objects of the type is incorrect. Instead, the expression specifies the exact size for
the type. Objects of the type may be larger than the specified size for padding. Note that the specified
size is not used when the type is used as a component of a record type and a component clause specify-
ing a different size is given.

If the length clause can not be satisfied by the type, an error message will be generated. [n addition,

the following restrictions apply:

access type: the only size supported is 32.

integer, fixed point, or enumeration type: minimum size supported is 1, the maximum size
that is supported is 32, the size of the largest prede-
fined integer type. Biased representation is not
supported. :

floating point type: the sizes supported are 32 and 64. Note that the

size must satisfy the DIGITS requirement. No
support is provided for shortened mantissa and/or
exponent lengths.

Specification of collection size: T'STORAGE_SIZE.

The effect of the specification of collection size is that a contiguous area of the required size will be
allocated for the collection. If an atempt to allocate an object within the collection requires more
space than currently exists in the collection, STORAGE_ERROR will be raised. Note that this space
includes the header information.

Specification of storage for a task activation: T STORAGE_SIZE.

The value specified by the length clause will be the total size of the stacks (pritnary and secondary)
allocated for the task.

Specification of small for a fixed point type : T SMALL.
The value of T"'SMALL is subject only to the restrictions defined in the LRM(13.2).
F.4.2: Enumeration Representation Clauses

Enumeration representation clauses are supported with the restriction that the values of the internal
codes must be in the range of MIN_INT .. MAX_INT.

F.4.3: Record Representation Clauses

Record representation clauses are supported with the following restrictions:

¢ Allowed values in the alignment clause are 1 (byte-aligned). 2 (half-word
aligned), 4 (full-word aligned) and 8 (double-word aligned).

* In the component clause, the storage unit off<>t (the static_simple_expression
part) must be a word offset (i.e. O or a positive multiple of 4). The range of bits
specified has the following restrictions: if the starting bit is 0, there is no limit
on the value for the ending bit: if the starting bit is greater than 0, then the end-
ing bit must be less than or equal to 31.

The actual size of the record object (including its use as a component of a record or array type) will
always be a multiple of words (32 bits) with padding added to the end of the record. if necessary. User-speci-
fied ranges must contain at least the minimal number of bits required to represent a (bit—packed) object of
the corresponding type: €.8. to represent an integer type with a range of 0.. 15, at least 4 bits must be specified
in the record representation specification range. For more information about record layout. refer to the RIS-
CAE Software Programmer’s Reference Manual.

F.4.4: Address Clauses

An address clause may be supplied for an object (whether constant or variable), a subprogram, or

a task entry, but not for a package or task unit. If an address clause is supplied for a subprogram, a body is
not allowed for that subprogram.

An interrupt entry (address clause for an entry) may not have parameters.

F.5: Implementation Dependent Components

There are no implementation—generated names denoting implementation—-dependent (record) com-
ponents.

F.6: Interpretation of Expression in Address Clauses

This section describes the interpretation of expressions that appear in address clauses, including
those for interrupts. System.Address is declared to be new INTEGER, hence, takes values from -2**31 to

2**31 - |. For address clauses on objects or subprograms, these values will be interpreted as (virtual) ad-
dresses in target memory as follows:

address >=0 implies (virtual) address == address
address < 0 implies (virtual) address == (2**32) + address

For an object:

The meaning of the value given by an address clause for an object is the (virtual) address in the target
memory assigned to that object.

For a subprogram:
The meaning of the value given by an address clause for a subprogram is the (virtual) address in target
memory to which the program will branch when the user program makes a call to the subprogram.
The user must supply the code to be executed and ensure that it is located at the indicated address.
Fur an entry:
The Honeywell RH32 provides 8 external interrupt levels, O to 7 with level 7 the highest priority.
If the value given by an address clause for a task entry is in the range 0 .. 7, the entry will be called
when the interrupt corresponding to that interrupt level is signaled. Interrupt level O is the Timer A
interrupt and is reserved for use by the RISCAE kemel in the implementation of package CAL-
ENDAR and to support Adadelay statements. If an interrupt entry attempts to use this interrupt level,
PROGRAM_ERROR will be raised during activation of the task containing the interrupt entry.

The RISCAE kernel aiso provides an INTERFACE which allows an application to cause a software
interrupt to occur. Values in the range 8 .. 15 are provided for software interrupts.

Any value outside the range of 0 .. 15 will cause PROGRAM_ERROR 1o be raised during activation
of the task containing the interrupt entry.

F.7: UNCHECKED CONVERSION

There are no restrictions on the use of UNCHECKED_CONVERSION. Conversions between ob-
jects whose sizes do not confirm may result in storage areas with undefined values.

F.8: Input-Output

This section describes implementation—dependent characteristics of the language predefined input-
output packages.

¢ The RISCAE Ada run time provides no support for external files nor for STAN-
DARD_INPUT. The predefined exception USE_ERROR will be raised if an
attempt is made to create or open any external file. The predefined exception
END_ERROR will be raised if an attempt is made to read STANDARD_INPUT.
Suppont for STANDARD_OUTPUT is implemented assuming the presence of a
console /O device which accepts output characters. The RISCAE simulator pro-
vides the effect of a console I/O device which is used to implement STAN-
DARD_OUTPUT. (Impiementation of STANDARD_OUTPUT for the RH32
ADM is TBD).

¢ Line terminator is ASCILLF (line feed); page terminator is ASCILFF (form
feed).

e The packages SEQUENTIAL _IO and DIRECT_IO cannot be instantiated with
unconstrained composite types or record types with discriminants without de-
faults.

* Package LOW_LEVEL_IO is not provided.
F.9: Tasking

This section describes other implementation—dependent characteristics of the tasking run—time pack-
ages.

F.9.1: Scheduling of Ada tasks

The scheduler of the Ada run~time tasking system runs tasks of equal priority in the order that they
became eligible to run and allows them to run until blocked or until interrupted by the eligibility of a task
of higher priority. A task whose priority is higher than the task currently running may be made eligible to
run by an interrupt or by the expiration of a delay statement. Such an event will cause the currently running
task to be immediately blocked so that the higher priority task may run.

F.9.2: Implementation-Dependent Termination of Library Unit Tasks

Even though a main program completes and terminates (its dependent tasks, if any, having terini-
nated), the elaboration of the program as a whole continues until each task dependent upon a library unit pack-
age has either terminated or reached an open terminate alternative. See LRM 9.4(13).

F.9.3: Implementation of Calendar

Support for implementation of Ada delay statements and for the function CLOCK in package CAL-

ENDAR are provided by the RISCAE kernel. The kernel implementation uses Timer A on the cache chip
of the Honeywell RH32 processor and external interrupt level 0. .

F.10: Other Matters

This section describes other implementation—dependent characteristics of the system.

Restrictions on main program:
Any parameterless procedure which is a library unit may be a main program (LRM 10.1:8).

Order of compilation of generic bodies and subunits (LRM 10.3:9):
Body and subunits of generic must be in the same compilation as the specification if instantiations
precede them (see AI-00257/02).

